The next generation of large satellites: PRISM and/or eLISA?

Today was the deadline for submitting so-called “White Papers” proposing the next generation of the European Space Agency satellite missions. Because of the long lead times for these sorts of complicated technical achievements, this call is for launches in the faraway years of 2028 or 2034. (These dates would be harder to wrap my head around if I weren’t writing this on the same weekend that I’m attending the 25th reunion of my university graduation, an event about which it’s difficult to avoid the clichéd thought that May, 1988 feels like the day before yesterday.)

At least two of the ideas are particularly close to my scientific heart.

The Polarized Radiation Imaging and Spectroscopy Mission (PRISM) is a cosmic microwave background (CMB) telescope, following on from Planck and the current generation of sub-orbital telescopes like EBEX and PolarBear: whereas Planck has 72 detectors observing the sky over nine frequencies on the sky, PRISM would have more than 7000 detectors working in a similar way to Planck over 32 frequencies, along with another set observing 300 narrow frequency bands, and another instrument dedicated to measuring the spectrum of the CMB in even more detail. Combined, these instruments allow a wide variety of cosmological and astrophysical goals, concentrating on more direct observations of early Universe physics than possible with current instruments, in particular the possible background of gravitational waves from inflation, and the small correlations induced by the physics of inflation and other physical processes in the history of the Universe.

The eLISA mission is the latest attempt to build a gravitational radiation observatory in space, observing astrophysical sources rather than the primordial background affecting the CMB, using giant lasers to measure the distance between three separate free-floating satellites a million kilometres apart from one another. As a gravitational wave passes through the triangle, it bends space and effectively changes the distance between them. The trio would thereby be sensitive to the gravitational waves produced by small, dense objects orbiting one another, objects like white dwarfs, neutron stars and, most excitingly, black holes. This would give us a probe of physics in locations we can’t see with ordinary light, and in regimes that we can’t reproduce on earth or anywhere nearby.

In the selection process, ESA is supposed to take into account the interests of the community. Hence both of these missions are soliciting support, of active and interested scientists and also the more general public: check out the sites for PRISM and eLISA. It’s a tough call. Both cases would be more convincing with a detection of gravitational radiation in their respective regimes, but the process requires putting down a marker early on. In the long term, a CMB mission like PRISM seems inevitable — there are unlikely to be any technical showstoppers — it’s just a big telescope in a slightly unusual range of frequencies. eLISA is more technically challenging: the LISA Pathfinder effort has shown just how hard it is to keep and monitor a free-floating mass in space, and the lack of a detection so far from the ground-based LIGO observatory, although completely consistent with expectations, has kept the community’s enthusiasm lower. (This will likely change with Advanced LIGO, expected to see many hundreds of sources as soon as it comes online in 2015 or thereabouts.)

Full disclosure: although I’ve signed up to support both, I’m directly involved in the PRISM white paper.