I’ve just finished teaching my eleven-week winter-term Cosmology course at Imperial. Like all lecturing, it was exhilerating, and exhausting. And like usual, I am somewhat embarrassed to say that I think I understand the subject better than when I started out. (I hope that the students can say some of the same things. Comments from them welcome, either way.)

It’s my second year, and I think I am slowly getting the hang of it. It’s hard to fit all of the interesting and up-to-date research in cosmology into 26 lectures, starting from scratch. This time I spent a little more time in the early lectures trying to give a heuristic explanation of some of the more advanced background topics, like the interpretation of the metric in Einstein’s General Relativity, and the physics behind the transition of the Universe from and ionized plasma to a neutral gas.

In a way, much of this was prelude to some of the most most exciting research in modern cosmology, the growth of large-scale structure from its first seeds into the pattern of galaxies we observe in the Universe today. Explaining this requires a lot of background: early-Universe thermodynamics and why the Universe started out hot, dense, and dominated by radiation; enough relativity to motivate how structure grows differently on large and small scales; and the generation of the initial conditions for structure, or at least our best current idea, inflation, which takes initial quantum randomness and blows it up to the size of the observable Universe (and solves quite a few other problems besides). All of this, and the background required even to get to these topics, barely fit into those 26 lectures (and I admit I was a little rushed toward the end…). And it was even harder to compress them down into four hours of postgraduate lectures.

Alongside this, I decided that none of the available textbooks had quite the right point of view for my discussion, at least not at the undergraduate level I was aiming for (and there are some very good textbooks out there, including Andrew Liddle, *An Introduction to Modern Cosmology*; Michael Rowan-Robinson, *Cosmology*; and Peter Schneider, *Extragalactic Astronomy and Cosmology: An Introduction*). So I also wrote a hundred or so pages of notes (which are available from my Imperial website, if you’re interested in a crash course).

I’m often puzzled by exactly what students want from the 26 hours of lectures themselves. Many, it seems to me, would prefer to merely transcribe my board notes without having to pay close attention to what I am actually saying; perhaps note-taking is not a skill that students perfect at school nowadays. I hope at least that those written notes make it a bit easier to both listen and think during the lectures. (Again, constructive criticism is more than welcome.)

This week I’ll be giving a review (just half an hour!) of cosmology at the IOP’s High-Energy and Astroparticle Physics 2010 meeting. And then I get to indulge in some of my hobbies, like doing scientific research.

## 3 responses to “Teaching Cosmology”

“… our best current idea, inflation” … Is “our” meant to exclude Fredkin and Wolfram? Are the 2 fundamental problems in QED the infinite self-energy of the electron and the ambiguous self-energy of the electron? In a qualitative sense, have Fredkin and Wolfram shown how to resolve the 2 preceding problems? Google “feynman fredkin wolfram”

Personally I use Ryden’s book for the 4th year undergrad cosmology course that I teach. It’s up-to-date and the students seem to like it.

Spring Break?Somehow I’ve managed to forget my usual end-of-term post-mortem of the year’s lecturing. I think perhaps I’m only now recovering from 11 weeks of lectures, lab supervision, tutoring alongside a very busy time analysing Planck satellit…